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Periodically Loaded Nonreciprocal Transmission Lines
for Phase-Shifter Applications

M. M. Z. KHARADLY

Abstract—Nonreciprocal transmission lines periodically loaded
with thin metallic diaphragms are analyzed using the wave trans-
mission matrix approach. An approximate equivalent circuit repre-
sentation of the diaphragm is proposed and discussed. Using this
representation, the differential phase-shift and impedance charac-
teristics of the periodically loaded line are computed for assumed
parameters, for “shunt-capacitance” and “shunt-industance” load-
ing. The range of validity of the approximate results is examined
using a certain criterion. The differential phase shift for both capaci-
tive and inductive loading is found to be greater than that of the
unloaded line and the results show the same general trends as those
previously observed experimentally.

1. INTRODUCTION

ECENT experimental evidence [17], [2] indicates

that periodic loading of a version of the twin-slab
waveguide ferrite phase shifter [3] by disks, apertures,
or a combination of both, yields interesting and useful
differential phase-shift characteristics. Disk or aperture
loading was found to substantially increase the differen-
tial phase shift per unit length of the device, while alternate
disk and aperture loading showed that it was possible to
obtain a device with a flat response over a wide frequency
range. The analysis presented in this paper has been
carried out in an attempt to explain some of these experi-
mental observations and to provide some understanding
of the effect of periodic loading of nonreciprocal trans-
mission lines.

The approach adopted is essentially a modification of
the wave transmission matrix analysis of periodic recipro-
cal structures. It takes into account the ‘“‘external char-
acteristics” of the nonreciprocal unloaded lines (phase
coeflicients and characteristic impedances), but does not

depend on the knowledge of their exact geometry or on -

how nonreciprocal propagation is achieved. Certain as-
sumptions and approximations are made. Subject to these
limitations, solutions are obtained for the phase coefficients
and the Bloch wave impedances of the periodically loaded
lines. Numerical values are given for a wide range of
assumed parameters.
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II. THE NONRECIPROCAL LINE PERIODICALLY
LOADED WITH THIN DIAPHRAGMS

Consider a length L of a “‘smooth’’ lossless infinite non-
reciprocal line, as shown in Fig. 1(a). Using the wave
transmission matrix representation [4], the amplitudes
of the forward- and the backward-traveling waves, g and
h, at the input and output planes =~ and o—0 can be
related in the following manner:

gi exp (j8+tL) 0 go
= (D)
h; 0 exp (—j8~L) ||k,

where 8+ and 8~ are the phase coefficients of the line for
propagation in the forward (4) and backward (—) di-
rections, respectively.

The line is now periodically loaded, interval L, with
thin diaphragms. In a reciprocal line, these diaphragms
are represented in an equivalent circuit by shunt sus-
ceptances. In this case, due to the nonreciprocal properties
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Fig. 1. Circuit representation of nonreciprocal transmission line
section. (a) Unloaded line. (b) Proposed exact equivalent circuit
(c) Proposed approximate equivalent circuit.
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of the line, a nonsymmetrical three-element 7' network g:t Ayt Apt|] gt
would provide a more general equivalent cireuit of the = (2a)
diaphragm, as shown in Fig. 1(b), the elements having hit Aat At || AT
different values for the opposite directions of propaga- where
tion. As a first approximation, however, it will be assumed
that the diaphragm can be represented by a single shunt At — 1 exp ()
susceptance (of different magnitudes for the two direc- - T+ &P U
tions of propagation), as shown in Fig. 1(¢). This assump- 5
tion should not be unreasona.ble if thfz dif-'ferences betv'veen At = ——exp [j3(6+ — 6]
the properties of the nonreciprocal line in the two direc- r
tions of propagation are not too great. Rt )
Provided the coupling between successive diaphragms Ayt = T ©XP Lot —67)]
can be neglected, the amplitudes of the forward- and
backward-traveling waves at the input and output of the At T~ — RtR- .
= —J367). 4
loaded line section are related by = T+ exp (=8 )
[ T2 ] [ 6+ ]
exp (]—2—) 0 exp (j 2—) 0
g 1 1 —R- Jo
) T _jp\ | LB 11— RR- . o | Lho
0 exp (T) 0 exp (— J 5—)
B _J R .J
; exp () —R-ew [0 —0)] ][4
= (2)
Rtexp [j3(6+ —67)] (I*T- — R*R~) exp (—j67) ] Lk
where If a Bloch wave is to propagate in the forward direction
9 in the infinite structure of identical loaded sections in
T+ = T BA cascade, the propagation constant per section, v* = ot +
+JB. Jot, is a solution of the equation below [4]:
+ '—jBeﬂ: (3) A11+ - e7 A12+
2+ jB~" = 0. (5)
Ant Apt — e
T% and R+ are voltage transmission and reflection coeffi- ) " ® o L
cients, respectively. B+ and B,~ are (approximate) “‘effec- The second solution, v~ = &~ + j¢~, is for propagation in

tive” normalized shunt susceptances of the diaphragm for
propagation in the forward and backward directions, re-
spectively. Relations (3) are derived in the Appendix.

It is important to note at this point that the determinant
in (2) does not generally satisfy the conditions required
for a physical nonreciprocal loss-free two-port. This is,
of course, a direct result of the equivalent circuit approx-
imation where the diaphragm is represented by a single
shunt susceptance in each direction. The extent of useful-
ness of this approximation is investigated numerieally in
Section V.

Equation (2) may be written in the form:!

1If the input and output terminals are interchanged, one obtains

[gi"] [Au_ A12—] [yo‘]
hi™ Ay~ Ay~ ho~

wl))ere An~, Ay ---are appropriately defined in accordance with
4).

(2b)

the negative direction. In general, one may write the
eigenvalue equation in the form

Au* — ev Ap*
(5a)

Agy* Ap® — o7

III. THE EQUIVALENT SHUNT SUSCEPTANCES

The shunt susceptances of the diaphragms will natu-
rally depend on the geometry of the line and on the type,
shape, and dimensions of the diaphragm as well as on the
frequency and propagating mode. The discussion presented
in this section is intended primarily for the purpose of
obtaining an appreciation of the effect of diaphragms in
nonreciprocal lines, which are also generally inhomoge-
neous.

Consideration of the reciprocal case may provide some
guidance: it is possible to derive analytic expressions 4],
[5], or use field matching computer methods [6] to com-
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pute accurately the normalized shunt susceptance (or
reactance) of a particular diaphragm in a specific homo-
geneous line. The method in [6] has been extended to
deal with transverse discontinuities in inhomogeneous
waveguides [7]. Experimental confirmation is also pro-
vided in [77]. Further study of the latter case revealed a
strong dependence of the normalized shunt susceptance
of a transverse discontinuity in an inhomogeneous wave-
guide on the propagation coefficient 8 of the dominant
propagating mode. This may be illustrated by an exam-
ple. Consider the configuration shown in Fig. 2. The fre-
quency and the dimensions of the waveguide and the
inductive window were kept constant, while the phase
coefficient 8 was varied by changing the thickness ¢ and
the permittivity e of the dielectric layer. The normalized
shunt susceptance B of the inductive window was calcu-
lated using the method in [7]. Normalization was done
with respect to the characteristic admittance of the in-
homogeneous waveguide in each case. The quantity
B/B—q is plotted as a function of 8/B(—s in Fig. 3(a).
In the region considered, it is seen that B is quite sensi-
tive to the value of 8. Moreover, the variation of B as a
function of 8 for any particular thickness of the dielectric
is both smooth and monotonie. As ¢/Ay (A is the free-
space wavelength) decreases, B seems to depend almost
exclusively on the value of 8, irrespective of the values of
the thickness or the permittivity of the dielectric layer.
This is depicted in Fig. 3(b) where the scales have been
expanded to show this behavior adequately. It is not,
however, argued that the behavior just illustrated would
hold to this degree in all cases of transverse discontinuities
and inhomogeneous waveguides. The example merely
serves to indicate that the normalized shunt reactance of
the discontinuity in the inhomogeneous waveguide is
strongly dependent on the phase coefficient. .

Now let us examine, in the light of this evidence, a
similar configuration of a nonreciprocal waveguide with
phase coeflicients 8+ and B-. 1f the difference between g+
and B~ is not too great, a transverse discontinuity may
be approximately represented by a single shunt element;
the susceptance of this element would assume two differ-
ent values B* for the two directions of propagation. When
normalized to the appropriate characteristic admittance

THIN DIAPHRAGM

E 7Y
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Fig. 2. Inhomogeneously filled rectangular waveguide with in-
ductive window. a/x, = 0.7473; d/x, = 0.1.
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Fig. 3. Variation of normalized susceptance of the inductive
window of Fig. 2 as a function of phase coefficient. (a) For rela-
tively large values of ¢/A,. (b) For small values of i/A,: @ & = 2.53,
t/\, varies in steps of 0.01; X ¢ = 4.00, {/)\, varies in steps of
0.005; © e = 6.00, t/\ varies in steps of 0.005.

of the line, Y.* or Y.~, the resultant values B* are ex-
pected to be different, as it is argued that these values
would be dependent mainly on the values of 8+ Thus one
could suggest a method for estimating the values of B*
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of the approximate equivalent circuit of Fig. 1(b). This
would involve computing B for two similar configurations
using dielectrics whose permittivities yield phase coeffi-
cients equal to 8+ and 8~ of the nonreciprocal line. This
method might be satisfactory only in limited cases and,
in general, there is a need to determine the parameters of
the exact equivalent circuit of Fig. 1(b). Experimental
work is presently planned to attempt just this.?

IV. IMPEDANCE

The characteristic (Bloch wave) impedances of a peri-
odically loaded line, Z3*, when the line is properly termi-
nated at specific planes, are not unique, but depend on
the location of the terminal planes chosen. Let the input
and output terminal planes be symmetrically situated
with respect to the loading diaphragm, as shown in Fig.
1(c), and let us connect an impedance Zz* at terminals
o—o (or Zp~ at terminals i, depending on direction of
propagation) of the unit cell. Zg+ is then equal to the
input impedance of the cell, Z,_;, when the cell is termi-
nated in Zgt, and is thus evaluated by equating Zg* to
the ratio of the total voltage to the total current at the
terminals 7. By applying relation (2), we have for the
forward- and backward-traveling voltage waves, g and h:

gt = (Au* + p*Ap®)g*
and
hE = (An* + p*Ant)g*
where
hot Zg* — Z.*

+ = = —_——
gO:I: y:l:ZB:i: + Zc:!:

p =

are ‘‘characteristic”’ voltage reflection coefficients at the
load terminals.

Zpt = Z;_ *

Aunt + pTAu + An* + pTAn*
Y& (An® + p*dpt) — Y7 (Ant + pEAn®)

where Y,* = 1/Z.* are the characteristic admittances of
the unloaded nonreciprocal line in the two directions of
propagation. Normalized to the characteristic impedances
of the unloaded line, Z,*,

- Ap* 4 pEAp + Ay® + pFAn

Zpt =
(Ani =+ PiAu) - ?/i(Azli -+ piAzzi)
N c:F
y*= = v (6)

V. NUMERICAL RESULTS

The differential phase-shift and impedance character-
isties of the periodically loaded line have been computed

2 Current Ph.D. dissertation work by W. K. MecRitchie, Uni-
versity of British Columbia, Vancouver, B. C., Canada.
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for a wide range of assumed parameters. Before presenting
these results, it is thought useful to examine the effect of
the equivalent ecircuit approximation used. For the

reason mentioned in Section II, the propagation con-

stants per cell, calculated using the single shunt ele-
ment approximation, are complex; y* = a* 4 jop*. The
ratio at/¢* can be either positive or negative depending
on the direction of propagation and the type of loading.
Since the theoretical a* should be indentically equal to
zero in the pass range when using the exact equivalent
circuit (no dissipation is assumed in the system), the
value | at/¢*| could be taken as an indication of the
degree to which the equivalent representation of Fig. 1(c)

is useful. A typical behavior of | a*/¢*| for shunt-
capacitance loading is shown in Fig. 4.

A. Shunt-Susceptance Loading

Fig. 5 shows a plot of the differential phase shift A¢ =
¢+ — ¢~ per section of a shunt-capacitance loaded line as
a function of B,, for various values of a parameter k =

5|
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Fig. 4. Relative magnitudes of “attenuation” to phase constants
of a loaded line section.
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Fig. 5. Differential phase-shift characteristics of “shunt-capaci-
tance” loaded line.
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Fig. 6. “shunt-in-

B.*/B,;~ and with 6+ = 50° and 6~ = 40°. A¢ values, for
other values of 6%, (6 — 6~ = 10°), are indicated by the
crosses and the circles on the same diagram. It is noticed
that these lie very close to or on the 6+ = 50° curve, sug-
gesting that, for the same value of the loading susceptance,
A¢ is fairly independent of the loading interval. A¢ is,
however, very sensitive to the value of k, and, as ex-
pected, cutoff occurs at lower values of B, for the higher
values of 6. For shunt-inductance loading, the correspond-
ing information is plotted in Fig. 6. It is interesting to
note that A¢ > A¢, for both shunt-capacitance and shunt-
inductance loading. A¢, is the differential phase shift of
the unloaded line.

B. Impedance

The normalized Bloch wave impedances as given by
(6) were computed for different values of the parameter
k lying in the range 1.0-2.0 in the case of capacitive load-
ing (and 1.0-0.5 for inductive loading), and for different
values of ¥~ in the range 1.0-2.0. It was found that while
the impedance was strongly dependent on k, it was not
very sensitive to y within the ranges considered.

Typical plots of the real and imaginary parts of Zz* as
a function of B, are shown in Figs. 7 and 8 for capacitive
and inductive loading, respectively. The imaginary part
of the impedance is relatively small, but increases sharply
when the real part becomes very small in the capacitive
case. This is again a result of the equivalent circuit ap-
proximation which appears to break down for heavy
values of loading and near the cutoff region of the peri-
odie structure.

VI. CONCLUSIONS

The approach adopted is quite general and depends
only indirectly on the type of unloaded nonreciprocal
transmission line. It requires knowledge of the equivalent
circuit parameters of the loading diaphragm. The analysis
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Fig. 7. Normalized characteristic impedance of “shunt-capaci-
tance” loaded line.
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Fig. 8. Normalized characteristic impedance of “shunt-inductance”
loaded line.

is approximate, but some measure of the effect of approxi-
mations is provided. The approximations used are essen-
tially contained in the equivalent circuit representation
of the loading diaphragms, and result in considerable
simplification of the computations. In order to obtain
quantitative (design) values in specific cases, it is neces-
sary to be able to determine accurately the parameters
of the exact equivalent circuit of the loading diaphragm
in the inhomogeneous nonreciprocal waveguide under con-
sideration. Most probably this would be feasible only
experimentally.

Although the computed characteristics are based on
agsumed values, the results are meaningful and, where
applicable, they show the same trends as existing experi-
mental evidence. -

Based on the analysis presented in the paper, the fol-
lowing points are of special interest concerning the char-
acteristics of the periodieally loaded nonreciprocal lines.

1) The differential phase-shift characteristics appear to
be virtually independent of the loading interval within
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the pass range and for the same value of the loading
susceptance. Cutoff, however, strongly depends on the
loading interval, as would be expected.

2) Both inductive and capacitive shunt loading result
in an #ncrease in the differential phase shift of the unloaded
line (as observed experimentally by Spaulding [17).

3) The additional differential phase shift (over that
of the unloaded line) is very sensitive to the parameter &,
which in turn is a function of the phase coefficients and
impedances of the lines.

It should be emphasized that the above characteristics,
particularly 1) and 2), were obtained by assuming ‘“‘pure”
shunt loading. Consideration of the exact equivalent cir-
cuit of the loading diaphragm, where series elements are
present, would undoubtedly result in modified charac-
teristics. :

APPENDIX

DERIVATION OF B+ AND T+

Referring to Fig. 9, the total voltage V. and total cur-
rent I, at the terminals i~¢ (at z = 0) for a wave propagat-
ing in the positive direction of z on a nonreciprocal trans-
mission line are given by

V[ = V+ + V_
and

Li=F+I =YVt —-Y V-

the total admittance at terminals i~

7 Y+ — Y =R+ -
O TS a2
= Y + jB*.
Rearranging, we obtain
—jB*+

o
B =y vt

Similarly, we can obtain
—jB-

R = .
Yt + Yo +B

It we normalize B* to the characteristic admittances
Y *, B+ — B£/Y.%, and define y* = Y, /V,.*, then we
can write
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Z=0 z

Fig. 9. Terminated nonreciprocal line for a wave incident in the
positive direction of z.

R:i::_j;l?i_:__
1+ y* + jBx’

The above expression can be simplified further by defining
“effective’” normalized shunt susceptances

B - 22
14 y*

Thus the expression for B+ reduces to
T ﬁ
2+ jB.*

giving
U T
2+ B

These final expressions for B* and T+ are similar to those
obtained in the case of reciprocal transmission lines.
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