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Periodically Loaded Nonreciprocal Transmission Lines

for Phase-Shifter Applications

M, M. Z. KHARADLY

Absfracf—Nonreciprocal transmission limes periodically loaded

with thin metalfic diaphragms are analyzed using the wave trans-

mission matrix approach. An approximate equivalent circuit repre-

sentation of the diaphragm is proposed and discussed. Using this

representation, the differential phase-shift and impedance charac-

teristics of the periodically loaded line are computed for assumed

parameters, for “shunt-capacitance” and “shunt-inductance” load-

ing. The range of validity of the approximate results is examined

using a certain criterion. The dtierential phase shiit for both capaci-

tive and inductive loading is found to be greater than that of the

unloaded line and the results show the same general trends as those

previously observed experimentally.

I. INTRODUCTION

RECENT experimental evidence [1], [2] indicates

that periodic loading of a version of the twin-slab

waveguide ferrite phase shifter [3] by disks, apertures,

or a combination of both, yields interesting and useful

differential phase-shift characteristics. Disk or aperture

loading was found to substantially increase the differen-

tial phase shift per unit length of the device, while alternate

dkk and aperture loading showed that it was possible to

obtain a device with a flat response over a wide frequency

range. The analysis presented in this paper has been

carried out in an attempt to explain some of these experi-

mental observations and to provide some understanding

of the effect of periodic loading of nonreciprocal trans-

mission lines.

The approach adopted is essentially a modification of

the wave transmission matrix analysis of periodic recipro-

cal structures. It takes into account the “external char-

acteristics” of the nonreciprocal unloaded lines (phase

coefficients and characteristic impedances), but does not

depend on the knowledge of their exact geometry or on

how nonreciprocal propagation is achieved. Certain as-

sumptions and approximations are made. Subject to these

limitations, solutions are obtained for the phase coefficients

and the Bloch wave impedances of the periodically loaded

lines. Numerical values are given for a wide range of

assumed parameters.
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II. THE NONRECIPROCAL LINE PERIODICALLY

LOADED WITH THIN DIAPHRAGMS

Consider a length L of a “smooth” lossless infinite non-

reciprocal line, as shown in Fig. 1(a). Using the wave

transmission matrix representation [4], the amplitudes

of the forward- and the backward-traveling waves, g and

h, at the input and output planes i–i and o-o can be

related in the following manner:
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hi o exp ( –jP–L) ho

where ~ and 13– are the phase coefficients of the line for

propagation in the forward (+) and backward (–) di-

rections, respectively.

The line is now periodically loaded, interval L, with

thin diaphragms. In a reciprocal line, these diaphragms

are represented in an equivalent circuit by shunt sus-

ceptances. In thk case, due to the nonreciprocal properties
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Fig. 1. Circuit representation of nonreciprocal transmission line
section. (a) Unloaded line. (b) Proposed exact equivalent circuit
(c) Proposed approximate equivalent circuit.
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of the line, a nonsymmetrical three-element T network

would provide a more general equivalent circuit of the

diaphragm, as shown in Fig. 1(b), the elements having Kl=c: :lKI “a)
different values for the opposite directions of propaga- where

tion. As a first approximation, however, it will be assumed

that the diaphragm can be represented by a single shunt
All+ = * exp ( j@)

susceptance (of different magnitudes for the two direc-

tions of propagation), as shown in Fig. 1(c). This assump-

tion should not be unreasonable if the differences between Au+ =
–R-
~ exp [j*(@ – 0–)]

the properties of the nonreciprocal line in the two direc-

tions of propagation are not too great.

Provided the coupling between successive diaphragms &l+ = ~ exp [~~(/3+ – 0-)]

can be neglected, the amditudes of the forward- and

backward-t;aveling waves at the input and output of the
A,,+ =

T+ T- – R+R-

Ioaded line section are related by l’-!- exp (–@_). (4)
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where

T*= 2-
2 + ]Be*

(3)

T~ and R~ are voltage transmission and reflection coeffi-

cients, respectively. ~e+ and ~e– are (approximate) “effec-

tive” normalized shunt susceptances of the diaphragm for

propagation in the forward and backward directions, re-

spectively. Relations (3) are derived in the Appendix.

It is important to note at this point that the determinant

in (2) does not generally satisfy the conditions required

for a physical nonreciprocal loss-free two-port. This is,

of course, a direct result of the equivalent circuit approx-

imation where the diaphragm is represented by a single

shunt susceptance in each direction. The extent of useful-
ness of this approximation is investigated numerically in

Section V.

Equation (2) may be written in the form:1

I If the input and output terminals are interchange, one obtains

(2b)

where All–, A12–. . . are appropriately defined in accordance with
(4).

[1

9.

ho
(2)

If a Bloch wave is to propagate in the forward direction

in the infinite structure of identical loaded sections in

cascade, the propagation constant per section, @ = a+ +

~dJ+, is a solution of the equation below [4]:

All+ – e~ Alz+

= o. (5)
A.zl+ Azz+ – ey

The second solution, y– = a- + j&, is for propagation in

the negative direction. In general, one may write the

eigenvalue equation in the form

AII* – e~ A12+
= o. (5a)

AZI* A22* — e7

HI. THE EQUIVALENT SHUNT SUSCEPTANCES

The shunt susceptances of the diaphragms will natu-

rally depend on the geometry of the line and on the type,

shape, and dimensions of the diaphragm as well as on the

frequency and propagating mode. The discussion presented

in this section is intended primarily for the purpose of

obtaining an appreciation of the effect of diaphragms in

nonreciprocal lines, which are also generally inhomoge-

neous.

Consideration of the reciprocal case may provide some

guidance: it is possible to derive analytic expressions [4],

[5], or use field matching computer methods [6] to com-
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pute accurately the normalized shunt susceptance (or

reactance) of a particular diaphragm in a specific homo-

geneous line. The method in [6] has been extended to

deal with transverse discontinuities in inhomogeneous

waveguides [7]. Experimental confirmation is also pro-

vided in [7]. Further study of the latter case revealed a

strong dependence of the normalized shunt susceptance

of a transverse discontinuity in an inhomogeneous wave-

guide on the propagation coefficient P of the dominant

propagating mode. This may be illustrated by an exam-

ple. Consider the configuration shown in Fig. 2. The fre-

quency and the dimensions of the waveguide and the

inductive window were kept constant, while the phase

coefficient B was varied by changing the thickness t and

the permittivity c. of the dielectric layer. The normalized

shunt susceptance B of the inductive window was calcu-

lated using the method in [7]. Normalization was done

with respect to the characteristic admittance of the in-

homogeneous waveguide in each case. The quantity
B/B(&O) is plotted as a function of fl/&t=o) in Fig. 3(a).

In the region considered, it is seen that B is quite sensi-

tive to the value of P. Moreover, the variation of B as a

function of@ for any particular thickness of the dielectric

is both smooth and monotonic. As t/Ao(Xo is the free-

space wavelength) decreases, B seems to depend almost

exclusively on the value of /3, irrespective of the values of

the thickness or the permittivity of the dielectric layer.

This is depicted in Fig. 3(b) where the scales have been

expanded to show this behavior adequately. It is not,

however, argued that the behavior just illustrated would

hold to this degree in all cases of transverse discontinuities

and inhomogeneous waveguides. The example merely

serves to indicate that the normalized shunt reactance of

the discontinuity in the inhomogeneous waveguide is

strongly dependent on the phase coefficient.

Now let us examine, in the light of this evidence, a

similar configuration of a nonreciprocal waveguide with

phase coeilicients p and /3-. If the difference between /3+

and p– is not too great, a transverse discontinuity y may

be approximately represented by a single shunt element;

the susceptance of this element would assume two cliff er-

ent values B* for the two directions of propagation. When

normalized to the appropriate characteristic admittance

Fig. 2. Inhomogeneously filled rectangular waveguide with in-
ductive window. a/& = 0.7473; d/h = 0.1.
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Fig. 3. Variation of normalized susceptance of the inductive
window of Fig. 2 as a function of phase coefficient. (a) For rela-
tively large values of t/Xo.(b) For small values of t/A.:. G = 2.53,
t/& varies in steps of 0.01.; X 6. = 4.00, t/k.varies in steps of
0.005; 0., = 6.00, t/Avarms in steps of 0.005.

of the line, Y.+ or Y.–, the resultant values B* are ex-
pected to be different, as it is argued that these values

would be dependent mainly on the values of @*. Thus one

could suggest a method for estimating the values of B*
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of the approximate equivalent circuit of Fig. l(b). This

would involve computing B for two similar configurations

using dielectrics whose permittivities yield phase coeffi-

cients equal to P+ and & of the nonreciprocal line. This

method might be satisfactory only in limited cases and,

in general, there is aneedto determine the parameters of

the exact equivalent circuit of Fig. 1 (b). Experimental

work is presently planned to attempt just this.2

IV. IMPEDANCE

The characteristic (Bloch wave) impedances of a peri-
odically loaded line, Z~*, when the line is properly termi-

nated at specific planes, are not unique, but depend on

the location of the terminal planes chosen. Let the input

and output terminal planes be symmetrically situated

with respect to the loading diaphragm, as shown in Fig.

1 (c), and let us connect an impedance ZB~ at terminals

o–o (or ZB– at terminals i–i, depending on direction of

propagation) of the unit cell. Z~+ is then equal to the

input impedance of the cell, Zi-~, when the cell is termi-

nated in ZB+, and is thus evaluated by equating ZB+ to

the ratio of the total voltage to the total current at the

terminals i–i. By applying relation (2), we have for the

forward- and backward-traveling voltage waves, g and h:

(ii ● = (41++ P+A2*)%*
and

h,+ = (A21* + p*A22+)go*

where

are “characteristic” voltage reflection coefficients at the

load terminals.

An+ + p*A12 + A,l+ + P+A22+

= Y.+ (AI1* + p+A12+) – Y.+ (.’421+ + P*A22*)

where Y.+ = 1/2.+ are the characteristic admittances of

the unloaded nonreciprocal line in the two directions of

propagation. Normalized to the characteristic impedances

of the unloaded line, Zc+,

All+ + P*A12 + A21* + P&A22

‘B+ = (~11+ + /-#A,,) – @(A,,+ + ,o+&2+)

(6)

V. NUMERICAL RESULTS

The differential phase-shift and impedance character-

istics of the periodically loaded line have been computed

z Current Ph.D. dissertation work by W. K. McRit chle, Uni-
versit y of British Columbia, Vancouver, B. C., Canada.

for a wide range of assumed parameters. Before presenting

these results, it is thought useful to examine the effect of

the equivalent circuit approximation used. For the

reason mentioned in Section II, the propagation con-

stants per cell, calculated using the single shunt ele-

ment approximation, are complex; @ = a+ + j@. The

ratio a*/@ can be either positive or negative depending

on the direction of propagation and the type of loading.

Since the theoretical a+ should be identically equal to

zero in the pass range when using the exact equivalent

circuit (no dissipation is assumed in the system), the’

value j a*/@ I could be taken as an indication of the

degree to which the equivalent representation of Fig. 1(c)

is useful. A typical behavior of ] a+/1#+ I for shunt-

capacitance loading is shown in Fig. 4.

A. Shunt-i$usceptunce Loading

Fig. 5 shows a plot of the differential phase shift A~ =

4+ – ~– per section of a shunt-capacitance loaded line as
a function of B., for various values of a parameter h =

5
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Fig. 4. Relative magnitudes of “attenuation” to phase constants
of a loaded line section.
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Fig. 5. Differential phase-shtit characteristics of “shunt-capaci-
tance” loaded line.



KHAR.4DLY:TRANsMISSIONLINEs FOR PHASE SHIFTERS 639

<“
u

20

L

.,”’x’/k=””
#x

/“
A +0

10 k.10

I x ~+= 50° ~-=400

t

— %+.90° 9-z 80°

Fig. 6. Differential phase-shift characteristics of “shunt-in-
ductance” loaded line.

Be+/B.– and with 0+ = 50° and 0– = 40°. A~ values, for

other values of 0*, (0+ — e– = 10°), are indicated by the

crosses and the circles on the same diagram. lt is noticed

that these lie very close to or on the O+ = 50° curve, sug-

gesting that, for the same value of the loading susceptance,

A+ is fairly independent of the loading interval. A@ is,

however, very sensitive to the value of ii, and, as ex-

pected, cutoff occurs at lower values of B. for the higher

values of 6. For shunt-inductance loading, the correspond-

ing information is plotted in Fig. 6. It is interesting to

note that Arp > AI& for both shunt-capacitance and shunt-

inductance loading. A& is the differential phase shift of

the unloaded line.

B. Impedance

The normalized Bloch wave impedances as given by

(6) were computed for different values of the parameter

k lying in the range 1.0-2.0 in the case of capacitive load-

ing (and 1.0-0.5 for inductive loading), and for cliff erent

values of g– in the range 1.0–2.0. It’ was found that while

the impedance was strongly dependent on lc,itwas not

very sensitive to y within the ranges considered.

Typical plots of the real and imaginary parts of ~~+ as

a function of ~e– are shown in Figs. 7 and 8 for capacitive

and inductive loading, respectively. The imaginary part

of the impedance is relatively small, but increases sharply

when the real part becomes very small in the capacitive

case. This is again a result of the equivalent circuit ap-

proximation which appears to break down for heavy

values of loading and near the cutoff region of the peri-

odic structure.

VI. CONCLUSIONS

The approach adopted is quite general and depends

only indirectly on the type of unloaded nonreciprocal

transmission line. It requires knowledge of the equivalent

circuit parameters of the loading diaphragm. The analysis

I
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Fig. 7. Normalized characteristic impedance of “shunt-capaci-
tance” loaded line.
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Fig. 8. Normalized characteristic impedance of “shunt-inductance”
loaded line.

is approximate, but some measure of the effect of approxi-

mations is provided. The approximations used are essen-

tially contained in the equivalent circuit representation

of the loading diaphragms, and result in considerable

simplification of the computations. In order to obtain

quantitative (design) values in specific cases, it is neces-

sary to be able to determine accurately the parameters

of the exact equivalent circuit of the loading diaphragm

in the inhomogeneous nonreciprocal waveguide under con-

sideration. Most probably this would be feasible only

experimentally.

Although the computed characteristics are based on

assumed values, the results are meaningful and, where

applicable, they show the same trends as existing experi-,.
mental evidence.

Based on the analysis presented in the paper, the fol-

lowing points qre of special interest concerning the char-

acteristics of the periodically loaded nonreciprocal lines.

1) The differential phase-shift characteristics appear to

be virtually independent of the loading interval within
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the pass range and for the same v@e of the loading

susceptance. Cutoff, however, strongly depends on th~’

loading interval, as would be expected.

2) Both inductive and capacitive shunt loading result

inan increasein the differential phaseshlft of the unloaded

line (as observed experimentally by Spaulding [1]).

3) The additional differential phase shift (over that

of the unloaded line) is very sensitive to the parameter k,

which in turn is a function of the phase coefficients and

impedances of the lines.

It should be emphasized that the above characteristics,

particularly 1) and 2), were obtained by assuming “pure”

shunt loading. Consideration of the exact equivalent cir-

cuit of the loading diaphragm, where series elements are

present, would undoubtedly result in modified charac-

teristics.

APPENDIX

DERIVATION Ol? R* AND T*

Referring to Fig. 9, the total voltage V, and total cur-

rent It at the terminals t–t (at z = O) for a wave propagat-

ing in the positive direction of z on a nonreciprocal trans-

mission line are given by

v,=v++v-

and

1, = 1+ + 1- = Yc+v+ – yc-v-

the total admittance at terminals ~–t .

I, Yc+ – YC-.R+
R+ . ~-

“=E= l+R+ ‘ J7+

= Y.+ + jB+.

Rearranging, we obtain

–,jB+

R+ = yc+ + y,- + jB~ “

Similarly, we can obtain

R- =
–j&

Y.+ + Y,- + jB- “

If we normalize B+ to the characteristic admittances
YC+, L?* = B*/YC~, and define y* = Y.7/ YC*, then we

can writ e

—------+-1
— Y’+

Yc- _
JB +

00

Yc+

‘--==E=
Z.o z

Fig. 9. Terminated nonreciprocal line for a wave incident in the
positive direction of z.

R& =
–j@&

l+y*+jl%”

The above expression can be simplified further by defining

“effective” normalized shunt susceptances

@ = 2B&

l+ y+”

Thus the expression for R~ reduces to

R+ =
–jBe*

2 + jBe~

giving

These final expressions for R* and T* are similar to those

obtained in the case of reciprocal transmission lines.
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